Some Category-Theoretic Ideas in Algebra (A Too-Brief Tour of Algebraic Structure, Monads, and the Adjoint Tower)

نویسندگان

  • George M. Bergman
  • GEORGE M. BERGMAN
چکیده

In recent years, categorists have come up with some very interesting ways of looking at algebraic constructions and algebraic objects. But most of what they write on this is technical and aimed at other categorists. I shall sketch some of these ideas here, emphasizing concrete examples, for the algebraist with a reasonable foundation in category theory (familiarity with adjoint functors and colimits). The unifying thread of the article will be the problem : What algebraic structure can be put on the values of a given set-valued functor?

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On categories of merotopic, nearness, and filter algebras

We study algebraic properties of categories of Merotopic, Nearness, and Filter Algebras. We show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. The forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the cat...

متن کامل

Monads and Algebraic Structures

This expository paper introduces the concept of monads and explores some of its connections to algebraic structures. With an emphasis on the adjoint functors that naturally participate in our conclusions, we justify how monads give us a distinct, ‘categorical’ way of discussing common structures such as groups and rings. In the final section, we consider a key example of how looking at structur...

متن کامل

Category Theoretic Understandings of Universal Algebra and its Dual: Monads and Lawvere Theories, Comonads and What?

Universal algebra is often known within computer science in the guise of algebraic specification or equational logic. In 1963, it was given a category theoretic characterisation in terms of what are now called Lawvere theories. Unlike operations and equations, a Lawvere theory is uniquely determined by its category of models. Except for a caveat about nullary operations, the notion of Lawvere t...

متن کامل

Applications of the Kleisli and Eilenberg-Moore 2-adjunctions

In 2010, J. Climent Vidal and J. Soliveres Tur developed, among other things, a pair of 2-adjunctions between the 2-category of adjunctions and the 2-category of monads. One is related to the Kleisli adjunction and the other to the Eilenberg-Moore adjunction for a given monad.Since any 2-adjunction induces certain natural isomorphisms of categories, these can be used to classify bijection...

متن کامل

Algebraic Theories over Nominal Sets

We investigate the foundations of a theory of algebraic data types with variable binding inside classical universal algebra. In the first part, a category-theoretic study of monads over the nominal sets of Gabbay and Pitts leads us to introduce new notions of finitary based monads and uniform monads. In a second part we spell out these notions in the language of universal algebra, show how to r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010